Monday, August 06, 2018

Can Scientific Discovery Be Automated?

Commentary from Ahmed Alkhateeb on Next Gov.com (Apr. 25, 2017):

Science is in the midst of a data crisis. Last year, there were more than 1.2 million new papers published in the biomedical sciences alone, bringing the total number of peer-reviewed biomedical papers to over 26 million. However, the average scientist reads only about 250 papers a year. Meanwhile, the quality of the scientific literature has been in decline. Some recent studies found that the majority of biomedical papers were irreproducible.

The twin challenges of too much quantity and too little quality are rooted in the finite neurological capacity of the human mind. Scientists are deriving hypotheses from a smaller and smaller fraction of our collective knowledge and consequently, more and more, asking the wrong questions, or asking ones that have already been answered. Also, human creativity seems to depend increasingly on the stochasticity of previous experiences—particular life events that allow a researcher to notice something others do not. Although chance has always been a factor in scientific discovery, it is currently playing a much larger role than it should.

One promising strategy to overcome the current crisis is to integrate machines and artificial intelligence in the scientific process. Machines have greater memory and higher computational capacity than the human brain. Automation of the scientific process could greatly increase the rate of discovery. It could even begin another scientific revolution. That huge possibility hinges on an equally huge question: Can scientific discovery really be automated?

I believe it can, using an approach that we have known about for centuries. The answer to this question can be found in the work of Sir Francis Bacon, the 17th-century English philosopher and a key progenitor of modern science.

………………………

Bacon’s insights also revealed an important hidden truth: the discovery process is inherently algorithmic. It is the outcome of a finite number of steps that are repeated until a meaningful result is uncovered. Bacon explicitly used the word “machine” in describing his method. His scientific algorithm has three essential components: First, observations have to be collected and integrated into the total corpus of knowledge. Second, the new observations are used to generate new hypotheses. Third, the hypotheses are tested through carefully designed experiments.  [read more]

In 1981, programmers Patrick Langler and Gary Bradshaw wrote an AI program called Bacon that made scientific discoveries using experimental data. So, yes it maybe possible to automate scientific discovery.

No comments: