Thursday, October 03, 2019

DNA Data Storage Is Closer Than You Think

From Scientific American.com (July 1):

Every minute in 2018, Google conducted 3.88 million searches, and people watched 4.33 million videos on YouTube, sent 159,362,760 e-mails, tweeted 473,000 times and posted 49,000 photos on Instagram, according to software company Domo. By 2020 an estimated 1.7 megabytes of data will be created per second per person globally, which translates to about 418 zettabytes in a single year (418 billion one-terabyte hard drive’s worth of information), assuming a world population of 7.8 billion. The magnetic or optical data-storage systems that currently hold this volume of 0s and 1s typically cannot last for more than a century, if that. Further, running data centers takes huge amounts of energy. In short, we are about to have a serious data-storage problem that will only become more severe over time. 

An alternative to hard drives is progressing: DNA-based data storage. DNA—which consists of long chains of the nucleotides A, T, C and G—is life’s information-storage material. Data can be stored in the sequence of these letters, turning DNA into a new form of information technology. It is already routinely sequenced (read), synthesized (written to) and accurately copied with ease. DNA is also incredibly stable, as has been demonstrated by the complete genome sequencing of a fossil horse that lived more than 500,000 years ago. And storing it does not require much energy.

But it is the storage capacity that shines. DNA can accurately stow massive amounts of data at a density far exceeding that of electronic devices. The simple bacterium Escherichia coli, for instance, has a storage density of about 1019 bits per cubic centimeter, according to calculations published in 2016 in Nature Materials by George Church of Harvard University and his colleagues. At that density, all the world’s current storage needs for a year could be well met by a cube of DNA measuring about one meter on a side. [read more]

No comments: